Going beyond θ_{13} : A whole new angle on reactor studies

- The idea for the experiment
- The sensitivity to Beyond-Standard-Model Physics
- Experimental Issues

Janet Conrad Columbia University

(with input from J. Formaggio, J.Link, M. Shaevitz) see hep-ex/0403048

Standard Model Prediction

A reactor-based $\sin^2 \theta_{\rm W}$ measurement:

- Probes new physics in the neutrino sector (like NuTeV)
- Has low $Q^2 \sim 4E-6 \text{ GeV}^2$
- Has different systematics from NuTeV

How to measure $\sin^2 \theta_w$ at a reactor:

Use the antineutrino-electron **elastic scattering** (ES)

The total rate for this process is sensitive to $\sin^2 \theta_w$

There are already people who would like to do a reactor experiment With goal of measuring osc. mixing parameter θ_{13} (at atmospheric Δm^2)

A sensible range to consider for the measurement is:

$$dN/N = 1.3\%...$$
 We can do that $= 1.0\%...$ May be attainable $= 0.7\%...$ Hard!

$$dN/N=1.3\% \Leftrightarrow d(\sin^2 \theta_w)=\pm 0.0019$$

Compare to NuTeV: ±0.0017

Is this range interesting for Beyond Standard Model physics?

Sensitivity to a heavy Z'

Using SO(10) Zχ as an example (Marciano) Need dN/N~0.5% for 800 GeV (@ 90% CL) 1.0% for 566 GeV

Can reach above present limits (just!)

Hard to imagine competing with LHC!

Sensitivity to ϵ

(see Loinaz et al, hep-ph/0403306)

A better fit is obtained if neutrinos are allowed to have non-standard couplings (adjusted by $\varepsilon \sim 0.3\%$)

$$\text{Zvv} \leftrightarrow (1-\varepsilon)$$

 $\text{W/v} \leftrightarrow (1-\varepsilon/2)$

Idea has now been expanded to consider flavor dependence, with fits to world's data on lepton couplings...

Reactor experiment is sensitive to $\epsilon_{\rm e}$ (slight ϵ_{μ} sensitivity comes through $G_{\rm F}$)

Plot by Loinaz, Fisher & Takeuchi...

Sensitivity to S & T in a model with nonzero-\varepsilon

Include NuTeV in the fit (expressed as g_L and g_R)

Plot by Loinaz, Fisher & Takeuchi...

Sensitivity to a neutrino magnetic moment

(Not cause of NuTeV anomaly!)

Neutrino magnetic moment:

A dN/N ~ 1% in agreement w/
SM would set a limit
×3 better than present lab limit

A analysis using the Evis shape will improve this sensitivity further (requires good model of backgrounds as function of Evis ... underway)

Sensitivity to neutrino-sector surprises...

Maybe the effect isn't anything we have thought of...

A new <u>neutrino</u> experiment, that is <u>not DIS</u>, that sees the same effect would <u>definitely be interesting!</u>

Some thoughts...

Type of BSM Physics Value/Uniqueness of info

Z-prime So-so

S and T studies Good

Nonstandard Couplings (\(\xi\)e) Very Good

Magnetic Moment Very Good

NuTeV Surprise Excellent

Reality Checks:

How do you measure ES at a reactor-experiment to ~1% ???

- 1. The reactor flux is only known to 2%
- 2. This is a single-electron signal (unlike inverse beta decay)

 Potential backgrounds are:

 beta-decaying contaminants

 spallation-produced isotopes.
- 3. The energy scale must be calibrated to 0.5% (same level as NuTeV)

How are these going to be solved?

Tricks to make a precision measurement possible:

1. Remove the reactor flux uncertainty by normalizing to inverse beta decay (IBD)

This cross section is known to 0.2%

2. Use the window from 3.5-5 MeV to reduce backgrounds

Contamination:

Employ techniques for Th clean-up from Borexino

Spallation
Go deep!
Measure the rate
w/ the far detector
& w/ VSPLAT

3. Use many beta sources to calibrate the detector: cosmic-ray produced: muon decay, ¹²B naturally in the oil: ¹⁴C sources introduced into the oil

We have looked at many other potential systematic issues!

Summary:

Elastic scattering at a reactor can open new windows on the NuTeV anomaly and BSM physics

There are a number of locations where the experiment can be done. (Site-selection for θ_{13} experiment in progress.) Cost is low.

There are a lot of experimental issues to still be worked out.

We would love your feedback on this idea! Thanks!

See also...

hep-ex/0403048

http://mwtheta13.uchicago.edu/index.html

http://faculty.washington.edu/josephf/beyond_theta13.html